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Synopsis 

It is well established that diffusion and relaxation processes in polymers above T, are closely related 
in that they are both governed by the polymer segmental motions, which are believed to be determined 
by the free volume present in the system. The diffusion coefficients of gases in elastomers can be 
accounted for by the WLF equation using the “universal values” of constants A and B. The pa- 
rameter K = BDIB, of Frisch and Rogers is used as a correction factor. An analysis has been made 
of the diffusion of five gases in nine elastomers, from data found in the literature. K and log D, are 
shown to vary with the penetrant but not with the polymer. Therefore, once the values of K and 
log Dg of gases are determined, their diffusion coefficients in any elastomers of known Tg a t  a variety 
of temperatures can be estimated. From the Arrhenius and the WLF relationships, an equation 
is derived to predict the activation energy of diffusion directly from the temperature of diffusion. 
the glass transition temperature of the amorphous polymer, the predetermined value of K ,  and the 
universal constants A and B. In the systems studied, the predictions agree on the average to within 
11-17% of the values calculated from the experimental data. 

INTRODUCTION 

The diffusion and relaxation processes in polymers above Tg are governed by 
the segmental mobility of the polymer chains, which is in turn considered to be 
affected by the total free volume and its distribution in the polymer system.l A 
quantitative relation between the viscous flow and the free volume of a polymer 
can be based on an expression similar to that introduced by Doolittle2 as shown 
in eq. (1): 

(1) 

where 7 is the viscosity coefficient of the polymer, A,, and B,  are constants de- 
pending on the geometry of the chain and independent of temperature, and f 
is the fractional free volume in the polymer system. 

Diffusion depends on the mobility of penetrants within the polymer and also 
on the free volume in the polymer. According to F ~ j i t a , ~  

(2) 

where M D  is the mobility of the penetrant in the polymer, and AD and BD are 
constants depending on the geometry of the penetrant, i.e., molecular shape and 
size, but not on temperature. 

From Doolittle’s equation, Williams, Landel, and Ferry4 deduced an equation, 
known as the WLF equation, which describes the temperature dependence of 
viscous flow: 

7 = A ,  exp (B,/ f)  

MD = AD exp (-BD/f) 
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where log U T  is the shift factor in the time-temperature superposition principle; 
77 and qg are the viscosity at  T and T,, respectively; T and Tg are the temperature 
of the flow and the glass transition temperature of polymer, respectively; and 
A and B are the “universal constants” having the values of -17.44 and 51.6 K, 
respectively. 

The WLF equation holds in the temperature range from Tg to Tg + 100 K. 
Equations (1) and (2) can be compared at  T and at  Tg; the relationships can be 
written as follows: 

where f ( T )  and f(T,) are the fractional free volumes at  T and Tg, respectively; 
and MD(T)  and MD(T,) are mobilities of penetrant at  T and T,, respectively. 
That is, 

Since the mobility M D  can be defined as 

MD = DT/RT (7) 
where DT is the thermodynamic diffusion coefficient and R is the gas constant, 
eq. (7) can be rewritten as 

where 

K = BD/B, (9) 
The parameter K was first introduced by Frisch and R ~ g e r s . ~  It was inter- 

preted as “a measure of the efficiency or inefficiency of utilization of free volume 
by a mass transport process compared to its utilization by a momentum transfer 
process in the same process.” The magnitude of the parameter K was expected 
to vary from very small to unity, depending on the penetrant molecule size and 
shape. According to Rogers et al., “K must be determined from diffusion and 
viscoelastic property measurement made on the same polymer sample to avoid 
random variations due to differences in sample preparation, molecular weight, 
morphology, impurity content, etc.” However, if the WLF equation is valid 
within the temperature range of T, to Tg + 100 K, the following expression 
should hold: 

DTTh‘- -KA(T-  T k ) + l o g ~ g  
log T B +  ( T -  T,) 

where Dg is the thermodynamic diffusion coefficient at  T = Tg. 
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Fig. 1. Master plot of log (D * T,/T) vs. log a~ for five gases and nine polymers a t  various tem- 
peratures (Table I): (0 )  COz; (A) N2; (m)  02; (0) Hz; (A) He. 

In the diffusion of ideal penetrants into amorphous polymers, which involves 
no specific interactions between the penetrants and the polymers, the thermo- 
dynamic diffusion coefficient in eq. (10) can be simply replaced by diffusion 
coefficients calculated from Fick's laws. 

ACTIVATION ENERGY OF DIFFUSION 

The diffusion coefficient can also be related to temperature using the Arrhenius 

(11) 

equation: 

D = DO exp (-Ed/RT) 

where DO is the preexponential factor and Ed is the activation energy of diffu- 
sion. 

If the activation energy Ed does not vary too greatly over the temperature range 
of experiment (or if Ed varies linearly with temperature T ) ,  a plot of In D vs. 1/T 
will give an apparent straight line of slope -E&. However, from eq. (10) a t  
any given temperature T ,  we have 

(12 )  
KABT 

d(log d ( l / T )  D, = '[ [B + ( T  - Tg)]2 - ll 

so that if eq. (11) is considered to refer to a narrow temperature range surrounding 
the temperature T ,  

[ [B + F Y T g ) I 2  - ll 
Ed = -2.303RT 
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DISCUSSION 

Significance of Frisch and Roger's Parameter K = BD/B,  

Examining eq. (lo), one would expect a plot of log (DT,/T) vs. [-A(T - 
T,)]/[B + (T  - T,)] for a penetrant diffusing into an elastomer to be a straight 
line with slope K and an intercept of log D, on the ordinate. Such plots have 
been made from literature data for small gases in various elastomers at different 
temperatures and are shown in Figure 1. The literature data and references are 
listed in Table I. The statistical analysis of the plots in Figure 1 is summarized 
in Table 11. 

It can be seen from Figure 1 and Table I1 that K and log D, vary with the 
penetrant but not with the polymer. This suggests that the diffusion coefficient 
of any gas listed in Table I1 can be estimated, for any new elastomer, from the 
T, of the elastomer. The temperature T of diffusion should be in the range T, 
+ 100 K 3 T 3 T,. 

Relation between K ,  log Dg, and Molecular Size of Penetrants 

It is to be noted from Table I1 that the K values increase with the molecular 
size of the penetrant, whereas the log Dg values decrease. Although we examined 
plots of K and of log D, against d, d2, and d3,  where d is the molecular diameter 
of the gas (from viscosity datalo), the best linear correlations were found using 
the linear diameter d (Fig. 2). The values of R2 for the correlations are 0.9913 
for K vs. d, and 0.9918 for log Dg vs. d .  These results confirm the predictions 
made by Frisch, Rogers, and their c o - w o r k e r ~ ~ , ~  that K will increase with the 
molecular size of the penetrant and will approach unity when the penetrant 
molecule becomes sufficiently large. Presumably, there is a critical size of the 
penetrant molecule, corresponding to the size of the preexisting holes in the 
polymer system, above which diffusion takes place only through the segmental 
motion of the polymer chains. The segmental mobility, in turn, is facilitated 
by an increase in the free volume of the polymer matrix. If the penetrant mol- 
ecule is smaller than the critical size of the preformed cavity, the diffusion process 
below T, may correspond to a rigid-pore diffusion mechanism and be insensitive 
to polymer chain mobility. Above the glass transition temperature of the 
polymer, it is possible that diffusion occurs due to both a pore mechanism and 
to the segmental mobility of the polymer chains. 

TABLE I1 
Effect of Molecular Size of Gas on K and log D, (Fig. 2)" 

Molecular 
Correlation No. of Molecular diameter,b 

Gas K loe D, coefficient observations wt. A 
Hz 0.2254 (f5.4%) -7.694 (f1.7%) 0.916 33 2 2.40 

Nz 0.4410 (f4.7%) -11.118 (f2.0%) 0.940 30 28 3.15 
0 2  0.3850 (f6.670) -10.331 (f2.6%) 0.920 21 32 2.98 

He 0.1560 (5~7.3%) -6.566 (f1.8%) 0.930 15 4 1.90 

COz 0.4713 (f7.8%) -11.492 (f3.4%) 0.893 21 44 3.34 

a Numbers in parentheses are the standard errors. 
From viscosity measurements at 20°C.10 
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1.0 2.0 30 

MOLECULAR DIAMETER ( A )  
Fig. 2. Plots of K and of log D, vs. molecular diameter of penetrant (Table 11). 

The behavior shown in Figure 2 implies a close relation between K and log Dg. 
A plot of K vs. log D, for the first five penetrant molecules gives a straight line 
with correlation coefficient R2 = 0.9988 and a coefficient of variation of 1.62% 
about the regression line (Fig. 3). The statistical analysis is summarized in Table 
111. One cannot help but wonder if this excellent linear relation between the 
two parameters K and log D, is spurious and arises merely because of random 
error, or because the ranges of data on both coordinates are small. Tests were 
made which are capable of revealing such a spurious linear correlation. A valid 
linear correlation between K and log D, was confirmed. Details of these tests 
can be found in Appendix A. The approach used is essentially that introduced 
by Exner.12J3 

Predictions of Activation Energy of Diffusion from Proposed Equation 

Using eq. (13), the predicted activation energy of diffusion (Ed,pred) of a gas 
listed in Table 11, in any new elastomer, can be estimated from the temperature 
of diffusion T, the glass transition temperature T,, and the tabulated value of 
K for the penetrant gas. This suggests that when a new elastomeric polymer 
or copolymer is synthesized, for example, only the T, of the polymer needs to 
be found experimentally to obtain an estimate of the diffusion behavior of the 
different gases listed at  different temperatures. Of course, the precise range 
of validity of this suggestion needs to be tested against new data, but our analysis 
of the literature data offers strong support for this approach. 

A comparison of the values of the predicted and observed activation energies 
is also shown in Table I. The agreement of these two parameters is confirmed 
by the plot of E,jobs vs. Ed,pred in Figure 4. The result of the statistical analysis 
of the linear regression is tabulated in Table IV. 

TABLE I11 
Statistical Analysis of Linear Plot of K vs. log De 

Slope = -0.0631 (f2.0%) 
Intercept = -0.2602 (3~4.6%) 
R2 = 0.9988 
Coefficient of variation about = 1.62% 

the regression line 
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o t  
-12 - 1 1  -10 -9 -8 -7 -6 

log Dg 

Fig. 3. Plot of K vs. log Dg for five penetrants (Tables I and 11). 

A @ A  
A *  

2 ,  
o z 4 s e 10 12 14 ie ia 20 n 24 ze 

Ed. PRmlCTED 

Fig. 4. Master plot of vs. Ed,pred.  (Table Iv): (0 )  Coz; (A) Nz; (m) 0 2 ;  (0) Hz; (A) He. 

Relation between Activation Energy of Diffusion and Glass Transition 
Temperature 

Frisch and his co-workers found that the activation energies for diffusion of 
small gases into polymers varied linearly with the glass transition temperatures 

TABLE IV 
Statistical Analysis: Linear Regression of E d  Observed vs. E d  Predicted (Figs. 4 and 5) 

Slope = 0.6843 (f0.0248) 
Intercept = 2.0008 (f0.2428) 
R2 = 0.9302 
Confidence limit = 99.99% 
No. of observations = 58 



THEORY OF DIFFUSION 637 

SOUD LINE 

01 . . . , . . . . , . . . . ,  
-100 -50 0 

Tg ( *C 1. 

Fig. 5. Plot of predicted and observed activation energy of diffusion (at 25°C) vs. Tg of polymers 
(Table I\'): (0) COZ; (A) Nz; (m) 02; (0) Hz; (A) He. 

of the p01ymers.l~ Figure 5 shows the literature data and the predictions from 
eq. (13) for diffusion temperatures of 25°C. The predicted curves are nonlinear, 
but the curvature is not great and would not be obvious experimentally if the 
data were subject to experimental errors. Equation (13) agrees in concept with 
Frisch's observation that the activation energies consist of two components: one 
is a function of the penetrant, the other of the polymer ( Tg) .  According to eq. 
(131, for a given temperature T the parameter K ,  which depends on the molecular 
geometry of the penetrant, can be regarded as one component, while the second 
is a function of Tg and therefore characteristic of the polymer only. Frisch14 
determined the parameter K to be proportional to the square of the diameter, 
or to the area of the gas molecules. In our investigation, we find that K varies 
directly with the linear diameter of the penetrant molecule. 

0 x 2 ( i  1 

x ( i , j )  - 
Fig. 6. Linear plot of Y(i , j )  vs. X ( i , j )  for data set i (cf. Appendix A). 
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Fig. 7. (a) Test for spurious linear correlation (Table V). (b) Test for spurious linear correlation 
(Table V). (E) Test for spurious linear correlation (Table V). (d) Test for spurious linear correlation 
(Table V) (cf. Appendix A). 
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(d) 
Fig. 7. (Continued from preuious page.) 

CONCLUSION 

Using statistical analysis and a linear regression model, the diffusion param- 
eters K and log Dg of an extended, free-volume diffusion model were found to 
be linearly correlated, to be independent of the polymer, and to vary linearly with 
the diameter of the penetrant gas molecules. Consequently, once the values of 
K and of log Dg for various gases are determined, the diffusion coefficients of 
those gases can be estimated directly from the temperature of diffusion T and 
the Tg of any new elastomer. Using the Arrhenius equation and the WLF 
equation, an equation was derived for predicting the activation energy of diffusion 
from the predetermined values of K,  T, Tg, and the “universal constants” A and 
B. The predicted activation energies agreed on average to within 11% (Hz), 12% 
(He), 13% (Nz), 15% (OZ), and 17% (COZ), respectively, with the experimental 
values. The maximum deviation observed was 35% for 0 2  in 61/39 butadiene- 
acrylonitrile. The confidence level of the observed correlation is greater than 
99%. 

The extension of this approach to other polymers and to other penetrant types 
will be of considerable interest and is under current study. Our proposed ap- 
proach should be valid for the gases of Table I diffusing in an elastomer which 
obeys the WLF equation with the “universal values” of A and B. 
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TABLE V 
Statistical Analysis of Tests to Reveal Any Spurious Relations between K and log Dg 

Coefficient of 
Variation about 

Test Plot shown in R2 the Regression Line (%) 

Yl(i)" vs. Yz(i)b Fig. 7(a) 0.993 
Yl( i )  VS. B(i)' Fig. 7(b) 0.994 
Yz(i) VS. B ( i )  Fig. 7(c) 0.974 
Y3(i)d VS. B ( i )  Fig. 7(d) 0.989 

1.45 
1.41 
1.64 
1.50 

a Yl( i )  = the ordinate value calculated from the regression line a t  the abscissa value X 1  = 8.50 

Yz(i) = the ordinate value calculated from the regression line a t  the abscissa value X Z  = 12.50 

B ( i )  = K value, or slope of the regression line: log D . Tg/T vs. -log aT. for a given gas (i). 
Y3(i) = Yl( i )  + Yz(i), for a given gas (i). 

(Y1 is a value of log D . T,/T; X 1  is the corresponding value of -log a T ) ,  for a given gas (i). 

(Yz is a value of log D . TJT; X z  is the corresponding value of -log a T ) ,  for a given gas (i). 

APPENDIX A 

Spurious Correlations between Slopes and Intercepts of Straight-Line 
Data Plots 

Suppose we have m different data sets (i), each of which separately gives a straight-line plot in 
a given coordinate system: 

i =  1,2 . . .  m 
j =  1 , 2  . . .  ni 

Y(i,j) = A ( i )  f B ( i )  . X(i , j )  

The data pair [X(i , j ) ,  Y(i,j)] is the j t h  observation in data set i. The linear correlation found for 
data set i is concisely summarized in the two parameters A ( i )  and B ( i ) ,  the intercept and slope, re- 
spectively, found for that straight-line plot of Y(i , j )  vs. X(i , j ) .  

If we can choose two common standard values X 1  and X Z  for the abscissae X(i,j) for all data sets, 
then each data set (i) can also be characterized by the corresponding values Yl( i )  and Ydi )  found 
for that  data set (Fig. 6): 

Yl( i )  = A(i)  + B ( i )  - X i  
Yz( i )  = A(i)  + B ( i )  . X 2  

i =  1,2, . . .  m (A-2) 

Suppose that a genuine linear relationship exists between the A (i) and B( i )  values found for each 
of the m data sets i = 1 , 2 .  . . m, i.e., 

A ( i )  = cy + P [B( i ) ]  i = I, 2,. . . m (A-3) 

Let fixed values X 1  and X z  be assigned to X(j , j )  for a comparison of all data sets. Then transfor- 
mations of eqs. (A-1) through (A-3) can be made to produce the following expressions: 

(A-4) 

Yl( i )  = a + ( p  + X I ) .  B ( i )  

Yz(i) = a + (P  + X z )  . B ( i )  

Y i ( i )  + Yz(i) = 2 a  + (20 + X i  + Xzl * B ( i )  

(A-5) 

(A-6) 

(A-7) 

Therefore, the plots of Yl( i )  vs. Y2(i), Y l ( i )  vs. B( i ) ,  Yz(i) vs. B ( i )  and Yl( i )  + Yz(i) vs. B ( i )  should 
give straight lines according to eqs. (A-4) through (A-7). 

Figures 7(a)-7(d) show such plots of data with A(i)  = log D, and B ( i )  = K ,  determined for each 
of five gases (i). The results of the linear regression of the plots are tabulated in Table V. The 
linearity of all the plots in Figure 6 confirms that the linear relationship between the K and log Dg 
values obtained for each of the five gases is real and is not due to random error or a restricted mea- 
surement range. 
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