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Synopsis

It is well established that diffusion and relaxation processes in polymers above T are closely related
in that they are both governed by the polymer segmental motions, which are believed to be determined
by the free volume present in the system. The diffusion coefficients of gases in elastomers can be
accounted for by the WLF equation using the “universal values” of constants A and B. The pa-
rameter K = Bp/B,, of Frisch and Rogers is used as a correction factor. An analysis has been made
of the diffusion of five gases in nine elastomers, from data found in the literature. K and log D, are
shown to vary with the penetrant but not with the polymer. Therefore, once the values of K and
log D, of gases are determined, their diffusion coefficients in any elastomers of known T, at a variety
of temperatures can be estimated. From the Arrhenius and the WLF relationships, an equation
is derived to predict the activation energy of diffusion directly from the temperature of diffusion.
the glass transition temperature of the amorphous polymer, the predetermined value of K, and the
universal constants A and B. In the systems studied, the predictions agree on the average to within
11-17% of the values calculated from the experimental data.

INTRODUCTION

The diffusion and relaxation processes in polymers above T, are governed by
the segmental mobility of the polymer chains, which is in turn considered to be
affected by the total free volume and its distribution in the polymer system.! A
quantitative relation between the viscous flow and the free volume of a polymer
can be based on an expression similar to that introduced by Doolittle2 as shown
in eq. (1):

n = A,exp (B,/f) (1)

where 7 is the viscosity coefficient of the polymer, A, and B, are constants de-
pending on the geometry of the chain and independent of temperature, and f
is the fractional free volume in the polymer system.

Diffusion depends on the mobility of penetrants within the polymer and also
on the free volume in the polymer. According to Fujita,3

Mp = Ap exp (—Bp/f) (2)

where Mp is the mobility of the penetrant in the polymer, and Ap and Bp are
constants depending on the geometry of the penetrant, i.e., molecular shape and
size, but not on temperature.

From Doolittle’s equation, Williams, Landel, and Ferry* deduced an equation,
known as the WLF equation, which describes the temperature dependence of
viscous flow:
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n_ A(T-Ty
logar = log y T T-T, (3)
where log ar is the shift factor in the time-temperature superposition principle;
n and 1, are the viscosity at T and T}, respectively; T and T, are the temperature
of the flow and the glass transition temperature of polymer, respectively; and
A and B are the “universal constants” having the values of —17.44 and 51.6 K,
respectively.
The WLF equation holds in the temperature range from T}, to T, + 100 K.
Equations (1) and (2) can be compared at T and at T',; the relationships can be
written as follows:

In-L =B Li— L 4
e UMD T (T “

Mp() L 1 ]
"Mp(Ty P T ATy
where f(T) and f(T,) are the fractional free volumes at T and T}, respectively;

and Mp(T) and Mp(T,) are mobilities of penetrant at T and Tg, respectively.
That is,

(5)

Mp(T) _=Bp, 1
Mp(Ty) B,  ng

Since the mobility Mp can be defined as
Mp = Drp/RT (7

where D is the thermodynamic diffusion coefficient and R is the gas constant,
eq. (7) can be rewritten as

In (6)

DT/T n
lo = —K log — (8)
8 D,/T, ® Mg
where
K = By/B, ©)

The parameter K was first introduced by Frisch and Rogers.> It was inter-
preted as “a measure of the efficiency or inefficiency of utilization of free volume
by a mass transport process compared to its utilization by a momentum transfer
process in the same process.” ! The magnitude of the parameter K was expected
to vary from very small to unity, depending on the penetrant molecule size and
shape. According to Rogers et al., “K must be determined from diffusion and
viscoelastic property measurement made on the same polymer sample to avoid
random variations due to differences in sample preparation, molecular weight,
morphology, impurity content, etc.”” ! However, if the WLF equation is valid
within the temperature range of T, to Ty + 100 K, the following expression
should hold:

DyT, —KA(T—Ty)
T B+ (T-T,)

where D, is the thermodynamic diffusion coefficient at T = T

log +log D, (10)



THEORY OF DIFFUSION 631

A
o
A 2 M4 o
A o
had| P SR J -
&9
. om o o® a °
o o o& . .1
-e0} ° o R:.. 5
o na . s
alr g ené
]
g i . ma 9
~70 '
a °
'
-8.0 A i . I n n i i
60 70 80 20 100 1.0 120 130

- o “ALT-Tg)
log 97 o(T-Tg)
Fig. 1. Master plot of log (D - Tx/T) vs. log ar for five gases and nine polymers at various tem-
peratures (Table I): (@) COq; (A) Ng; (M) Oy; (0) Hy; () He.

In the diffusion of ideal penetrants into amorphous polymers, which involves
no specific interactions between the penetrants and the polymers, the thermo-
dynamic diffusion coefficient in eq. (10) can be simply replaced by diffusion
coefficients calculated from Fick’s laws.

ACTIVATION ENERGY OF DIFFUSION

The diffusion coefficient can also be related to temperature using the Arrhenius
equation:

D = Dgyexp (—E4/RT) (11)

where D, is the preexponential factor and E, is the activation energy of diffu-
sion.

If the activation energy E; does not vary too greatly over the temperature range
of experiment (or if E4 varies linearly with temperature T'), a plot of In D vs. 1/T
will give an apparent straight line of slope —E4/R. However, from eq. (10) at
any given temperature T, we have

d(log D) _ [ KABT 1] (12)
[

d(1/T) B+ (T-Tyl2

so that if eq. (11) is considered to refer to a narrow temperature range surrounding
the temperature T,

(13)

E;= —2.303RT[ KABT ]

B+ (T-Tyl2
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DISCUSSION

Significance of Frisch and Roger’s Parameter K= Bp/B,

Examining eq. (10), one would expect a plot of log (DT/T) vs. [-A(T —
Tg)l/[B + (T — Tg)] for a penetrant diffusing into an elastomer to be a straight
line with slope K and an intercept of log D, on the ordinate. Such plots have
been made from literature data for small gases in various elastomers at different
temperatures and are shown in Figure 1. The literature data and references are
listed in Table I. The statistical analysis of the plots in Figure 1 is summarized
in Table II.

It can be seen from Figure 1 and Table II that K and log D, vary with the
penetrant but not with the polymer. This suggests that the diffusion coefficient
of any gas listed in Table II can be estimated, for any new elastomer, from the
T, of the elastomer. The temperature T of diffusion should be in the range T},
+10K=>T>T,

Relation between K, log D,, and Molecular Size of Penetrants

It is to be noted from Table II that the K values increase with the molecular
size of the penetrant, whereas the log D, values decrease. Although we examined
plots of K and of log D, against d, d?, and d3, where d is the molecular diameter
of the gas (from viscosity data!?), the best linear correlations were found using
the linear diameter d (Fig. 2). The values of R2 for the correlations are 0.9913
for K vs. d, and 0.9918 for log D, vs. d. These results confirm the predictions
made by Frisch, Rogers, and their co-workers!® that K will increase with the
molecular size of the penetrant and will approach unity when the penetrant
molecule becomes sufficiently large. Presumably, there is a critical size of the
penetrant molecule, corresponding to the size of the preexisting holes in the
polymer system, above which diffusion takes place only through the segmental
motion of the polymer chains. The segmental mobility, in turn, is facilitated
by an increase in the free volume of the polymer matrix. If the penetrant mol-
ecule is smaller than the critical size of the preformed cavity, the diffusion process
below Ty may correspond to a rigid-pore diffusion mechanism and be insensitive
to polymer chain mobility. Above the glass transition temperature of the
polymer, it is possible that diffusion occurs due to both a pore mechanism and
to the segmental mobility of the polymer chains.

TABLE 1I
Effect of Molecular Size of Gas on K and log D, (Fig. 2)2
Molecular
Correlation No. of Molecular diameter,?
Gas K log Dy coefficient observations wt.
H. 0.2254 (£5.4%) ~7.694 (£1.7%) 0.916 33 2 2.40
He 0.1560 (+£7.3%) —6.566 (£1.8%) 0.930 15 4 1.90
N 0.4410 (£4.7%) —11.118 (+£2.0%) 0.940 30 28 3.15
(o2 0.3850 (£6.6%) —10.331 (£2.6%) 0.920 21 32 2.98
COy  0.4713 (£7.8%) —11.492 (£3.4%) 0.893 21 44 3.34

a Numbers in parentheses are the standard errors.
b From viscosity measurements at 20°C.10
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Fig. 2. Plots of K and of log D, vs. molecular diameter of penetrant (Table II).

The behavior shown in Figure 2 implies a close relation between K and log D,.
A plot of K vs. log D, for the first five penetrant molecules gives a straight line
with correlation coefficient R2 = (0.9988 and a coefficient of variation of 1.62%
about the regression line (Fig. 3). The statistical analysis is summarized in Table
III. One cannot help but wonder if this excellent linear relation between the
two parameters K and log D, is spurious and arises merely because of random
error, or because the ranges of data on both coordinates are small. Tests were
made which are capable of revealing such a spurious linear correlation. A valid
linear correlation between K and log D, was confirmed. Details of these tests
can be found in Appendix A. The approach used is essentially that introduced
by Exner.12.13

Predictions of Activation Energy of Diffusion from Proposed Equation

Using eq. (13), the predicted activation energy of diffusion (g preq) of a gas
listed in Table II, in any new elastomer, can be estimated from the temperature
of diffusion T, the glass transition temperature T}, and the tabulated value of
K for the penetrant gas. This suggests that when a new elastomeric polymer
or copolymer is synthesized, for example, only the T, of the polymer needs to
be found experimentally to obtain an estimate of the diffusion behavior of the
different gases listed at different temperatures. Of course, the precise range
of validity of this suggestion needs to be tested against new data, but our analysis
of the literature data offers strong support for this approach.

A comparison of the values of the predicted and observed activation energies
is also shown in Table I. The agreement of these two parameters is confirmed
by the plot of Eg obs VS. Eq preq in Figure 4. The result of the statistical analysis
of the linear regression is tabulated in Table IV.

TABLE HI
Statistical Analysis of Linear Plot of K vs. log D,

Slope = —0.0631 (£2.0%)
Intercept = —0.2602 (+4.6%)
R2 = 0.9988
Coefficient of variation about = 1.62%

the regression line
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Fig. 3. Plot of K vs. log Dy for five penetrants (Tables I and II).
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Fig. 4. Master plot of Eg obs. VS. Eg pred. (Table IV): (@) COg; (a) Ng; (m) Og; (0) Hy; (4) He.
Relation between Activation Energy of Diffusion and Glass Transition
Temperature

Frisch and his co-workers found that the activation energies for diffusion of
small gases into polymers varied linearly with the glass transition temperatures

TABLE 1V
Statistical Analysis: Linear Regression of Ey Observed vs. Ey4 Predicted (Figs. 4 and 5)

Eapred = —2.303RT |—22BT 4
d,pred - [B + (T - Tg)]2
Slope = (.6843 (£0.0248)
Intercept = 2.0008 (£0.2428)
R? = (.9302
Confidence limit = 99.99%

No. of observations =58
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of the polymers.!* Figure 5 shows the literature data and the predictions from
eq. (13) for diffusion temperatures of 25°C. The predicted curves are nonlinear,
but the curvature is not great and would not be obvious experimentally if the
data were subject to experimental errors. Equation (13) agrees in concept with
Frisch’s observation that the activation energies consist of two components: one
is a function of the penetrant, the other of the polymer (T). According to eq.
(13), for a given temperature T the parameter K, which depends on the molecular
geometry of the penetrant, can be regarded as one component, while the second
is a function of T,y and therefore characteristic of the polymer only. Frischl4
determined the parameter K to be proportional to the square of the diameter,
or to the area of the gas molecules. In our investigation, we find that K varies
directly with the linear diameter of the penetrant molecule.

l Yo(i)

y(i,j)

Yiti)

i

]

H
(o] xi(i) x2(i)
x(i,j) —

Fig. 6. Linear plot of Y(i,j) vs. X(i,j) for data set i (cf. Appendix A).
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CONCLUSION

Using statistical analysis and a linear regression model, the diffusion param-
eters K and log D, of an extended, free-volume diffusion model were found to
be linearly correlated, to be independent of the polymer, and to vary linearly with
the diameter of the penetrant gas molecules. Consequently, once the values of
K and of log D, for various gases are determined, the diffusion coefficients of
those gases can be estimated directly from the temperature of diffusion T and
the T, of any new elastomer. Using the Arrhenius equation and the WLF
equation, an equation was derived for predicting the activation energy of diffusion
from the predetermined values of K, T, T, and the “universal constants” A and
B. The predicted activation energies agreed on average to within 11% (Hy), 12%
(He), 13% (Ng), 15% (0s), and 17% (COs), respectively, with the experimental
values. The maximum deviation observed was 35% for O, in 61/39 butadiene—
acrylonitrile. The confidence level of the observed correlation is greater than
99%.

The extension of this approach to other polymers and to other penetrant types
will be of considerable interest and is under current study. Our proposed ap-
proach should be valid for the gases of Table I diffusing in an elastomer which
obeys the WLF equation with the “universal values” of A and B.
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TABLE V
Statistical Analysis of Tests to Reveal Any Spurious Relations between K and log D,
Coefficient of
Variation about
Test Plot shown in R? the Regression Line (%)

Y1(i)2 vs. Yo(i)P Fig. 7(a) 0.993 1.45
Y1(i) vs. B(i)© Fig. 7(b) 10.994 1.41
Yo(i) vs. B(i) Fig. 7(c) 0.974 1.64
Y3(i)d vs. B(i) Fig. 7(d) 0.989 1.50

2 Y1(i) = the ordinate value calculated from the regression line at the abscissa value X; = 8.50
(Yyis avalue oflog D - T,/T; X, is the corresponding value of —log ar), for a given gas (i).

b Yo(i) = the ordinate value calculated from the regression line at the abscissa value Xy = 12.50
(Yqis a value of log D - Tg/T; X is the corresponding value of —log ar), for a given gas (i).

¢ B(i) = K value, or slope of the regression line: log D - T,/T vs. —log ar, for a given gas (i).

dY3(i) = Y1(i) + Ys(i), for a given gas (i).

APPENDIX A

Spurious Correlations between Slopes and Intercepts of Straight-Line
Data Plots

Suppose we have m different data sets (i), each of which separately gives a straight-line plot in
a given coordinate system:

YG) = AG) £ BG-XGH L DETm (A1)
J=L2...n
The data pair [X(1,/), Y(i,j)] is the jth observation in data set i. The linear correlation found for
data set 1 is concisely summarized in the two parameters A(¢) and B(:), the intercept and slope, re-
spectively, found for that straight-line plot of Y(i,j) vs. X (i,7).
If we can choose two common standard values X; and X5 for the abscissae X (i,j) for all data sets,
then each data set (i) can also be characterized by the corresponding values Y;(i) and Ys(i) found
for that data set (Fig. 6):

Y1) = AG) + B() - X1
Yo(i) = AG) + B() - Xo

Suppose that a genuine linear relationship exists between the A (i) and B(i) values found for each
of the m datasetsi =1,2...m,l.e.,

A() = a+ B [BG)] i=12,...m (A-3)

1=1,2,...m (A-2)

Let fixed values X and X be assigned to X (§,j) for a comparison of all data sets. Then transfor-
mations of eqs. (A-1) through (A-3) can be made to produce the following expressions:

nm=af?;éj+ﬁ:;jym) (A-4)
Y1) = o+ (B+ X - BG) (A-5)
Yoli) = o+ (B + X) - BG) (A-6)
Yi(0) + Yo(i) = 2a + {28 + X1 + X3} - B(i) (A-7)

Therefore, the plots of Y1(i) vs. Ya(2), Y1(i) vs. B(i), Ya(i) vs. B(i) and Y;(Z) + Ya(i) vs. B(i) should
give straight lines according to eqs. (A-4) through (A-7).

Figures 7(a)-7(d) show such plots of data with A(i) = log D, and B(i) = K, determined for each
of five gases (). The results of the linear regression of the plots are tabulated in Table V. The
linearity of all the plots in Figure 6 confirms that the linear relationship between the K and log D,
values obtained for each of the five gases is real and is not due to random error or a restricted mea-
surement range.
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